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Abstract: The present research offers insight into the connections between higher-
order difference equations with iterated sums and symmetric functions, as well as
the resulting inequalities from these interactions. In this study, we introduce new
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dle significant higher-order nonlinear finite difference equations with iterated sums.
With the aid of these results, it will be simple to examine a collection of higher-
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numerical illustration to highlight the relevance of our findings.
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1. Introduction
Difference equations and symmetric functions are fundamental mathematical

notions with distinct properties and applications. Difference equations reflect the
evolution of discrete sequences, whereas symmetric functions represent the sym-
metry of algebraic expressions. This article investigates the relationships between
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these seemingly disparate mathematical notions, which lead to numerous inequali-
ties. Our research intends to systematically analyze and implement these inequali-
ties by combining difference equations with iterated sums and symmetric functions.

Solution analysis for differential, integral, and difference equations relies heav-
ily on inequalities for a wide range of qualitative and quantitative purposes. The
following Gronwall-Bellman inequality [7] is one of the most commonly used in-
equalities in the research of differential equations.
If u(s) and p(s) are continuous non-negative functions on [α, β] such that

u(s) ≤ u0 +

∫ s

α

p(t)u(t)dt, for s ∈ [α, β],

where u0 ∈ [0,∞), then

u(s) ≤ u0 exp

(∫ s

α

p(t)dt

)
, for s ∈ [α, β].

In the later decades, several generalizations and extensions of this inequality
have appeared in literature to explore more general classes of integral and differ-
ential equations (see [10, 14, 18, 21] and references therein). In [13], L. Ou-Yang
developed a crucial generalization of Gronwall-Bellman inequality to its nonlinear
form stated below.
If u(s) and p(s) are non-negative functions defined on [0,∞) such that

u2(s) ≤ u20 +

∫ s

0

p(t)u(t)dt, for s ∈ [0,∞),

where u0 ∈ [0,∞), then

u(s) ≤ u0 +

∫ s

0

p(t)dt, for s ∈ [0,∞).

Recently, Abdeldaim and Yakout [1] developed a more extended version of
Gronwall-Bellman inequality to uncover the hidden characteristics of solutions of
several families of integral equations.

Simultaneously, several researchers devised numerous discrete analogues of the
above-mentioned and similar classes of inequalities to undertake the research of
finite difference equations and their solutions (see [3, 4, 8, 9, 10, 11, 17, 18, 20, 22]
and references mentioned therein).

Though a handful of inequalities related to above-mentioned classes have been
investigated, extended, and generalized, these inequalities were not adequate to
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deal with classes of higher-order difference equations. In [12], Medved generalized
the Bihari-like integral inequalities with double integrals due to various researchers
[2, 5, 6, 19] to multiple integrals with delay to encompass the study of higher
order differential equations and integrodifferential equations. Along similar lines,
Pachpatte [14, 16] initiated the study of a class higher order integrodifferential
equations in one variable with iterated integrals. To analyze several aspects of
the solutions of these equations, Pachpatte developed several integral inequalities
and studied the boundedness and uniqueness of the solutions. In the later years,
Pachpatte also presented the discrete analogues of these inequalities (see [15, 17])
to furnish a potent tool to deal with higher-order linear difference equations.

These results, however, do not obtain clear estimates of the solutions of some
more general families of finite difference equations with iterated sums. In this
manuscript, we present a few new inequalities of an algebraic type involving sym-
metric functions to address the more significant and general class of the aforemen-
tioned difference equations. We also explore solutions of a class of higher-order
difference equations with iterated sums for uniqueness, boundedness, and its con-
tinuous dependence on the original data. We also present a numerical illustration
to highlight the usefulness of our result.

In the subsequent discussion, we set N0 = {0, 1, 2, . . . } and define an operator
L on class of non-negative functions u(s) on N0 (see [17]) recursively as

L0u(s) = u(s),

Ltu(s) =
Lt−1u(s+ 1)− Lt−1u(s)

wt(s)
for t ≥ 1,

where u(s) is non-negative and wt(s) are some positive functions defined on N0 for
1 ≤ t ≤ k with wk(s) = 1. We list here an important Pachpatte’s inequality [17],
which is crucial for our proofs.
If u(s), a(s), b(s) are non-negative functions on N0 with

∆u(s) ≤ a(s)u(s) + b(s),

then

u(s) ≤ u(0)
t−1∏
s=0

(1 + a(s)) +
t−1∑
s=0

b(s)
t−1∏

s′=s+1

(1 + a(s′)).

2. Main results
In the subsequent lemma, we develop symmetric function method and obtain a

set of connections between an unknown function and its earlier values.
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Lemma 2.1. If

u(m+ 1) ≤ (α v(m) + 1)u(m) + β v(m), u(0) = u0, (2.1)

for some nonnegative functions u(m), v(m) defined on N0, then

u(m) ≤ u0

m−1∏
n=0

(1 + αv(n)) + β
m−1∑
n=0

αnSn+1, (2.2)

where S1, S2, . . . , Sm are elementary symmetric functions defined as

S1 = v(0) + v(1) + · · ·+ v(m− 1),

S2 = v(0)v(1) + v(0)v(2) + · · ·+ v(m− 2)v(m− 1),

...

Sm = v(0)v(1) . . . v(m− 1).

Proof. We have m ≥ 0. Now, we will use the idea of recurrence to accomplish
this result.
Firstly, for m = 0, inequality (2.1) gives the estimate

u(1) ≤ (α v(0) + 1)u(0) + β v(0). (2.3)

If we put m = 1 in the inequality (2.1), we get

u(2) ≤ (α v(1) + 1)u(1) + β v(1). (2.4)

Now, using (2.3) in (2.4), we obtain

u(2) ≤ (αv(1) + 1)((αv(0) + 1)u(0) + βv(0)) + βv(1)

= (αv(1) + 1)(αv(0) + 1)u(0) + (αv(1) + 1)βv(0) + βv(1)

= (αv(1) + 1)(αv(0) + 1)u(0) + β(αv(0)v(1) + (v(0) + v(1))). (2.5)

Proceeding identically, we obtain

u(m) ≤ (αv(0) + 1)(αv(1) + 1) . . . (αv(m− 1) + 1)u(0)

+ β(αm−1v(0)v(1) . . . v(m− 1) + · · ·+ α0(v(0) + v(1) + · · ·+ v(m− 1))).
(2.6)
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Consider elementary symmetric polynomials for v(0), v(1), . . . , v(m − 1) as in the
statement. Then, we find that

u(m) ≤ u0

m−1∏
n=0

(1 + αv(n)) + β
m−1∑
n=0

αnSn+1.

This completes the proof of our lemma.

Remark 2.1. In nonlinear analysis, geometric convergence rates are frequently
examined about iterative PDE solvers, such as the Poisson-Nernst-Planck equations
and preconditioned steepest descent for p-Laplacian terms. These techniques aim
for minimal computational steps and effective convergence to a solution. However,
the iterative structure developed in this paper, which involves symmetric functions
and iterated sums, differs in approach and context from the previously described
nonlinear iterative methods.

In our next results, we use the symmetric function approach outlined in the
prior lemma and the subsequent inequality to develop power non-linear estimates
for higher-order difference equations involving iterated sums.

Lemma 2.2. (Zhao [21]) If x ≥ 0, p1 ≥ p2 ≥ 0, where p1 ̸= 0, then x
p2
p1 ≤

p2
p1
c

p2−p1
p1 x+ p1−p2

p1
c

p2
p1 , for any c > 0.

In the further results, we develop p1 − p2−nonlinear variants of higher order
difference equations involving iterated sums.

Theorem 2.3. Assume that u(m), f(m) are nonnegative functions and w1(m),
w2(m), . . . , wk−1(m) are positive functions for m ∈ N0. If p1 ≥ p2 ≥ 0, p1 ̸= 0 and
for some nonnegative constant u0,

up1(m) ≤ u0 +
m−1∑
m1=0

w1(m1)

m1−1∑
m2=0

w2(m2) · · ·
mk−2−1∑
mk−1=0

wk−1(mk−1)

mk−1−1∑
mk=0

f(mk)u
p2(mk), m ∈ N0, (2.7)

then

u(m) ≤

{
u0

m−1∏
n=0

(1 + λ1f̃(n)) + λ2

m−1∑
n=0

λn1S1,n+1

} 1
p1

, (2.8)

where
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λ1 =
p2
p1
c

p2−p1
p1 , λ2 =

p1 − p2
p1

c
p2
p1 , c > 0,

S1,1 = f̃(0) + f̃(1) + · · ·+ f̃(m− 1),

S1,2 = f̃(0)f̃(1) + f̃(0)f̃(2) + · · ·+ f̃(m− 2)f̃(m− 1),

...

S1,m = f̃(0)f̃(1) . . . f̃(m− 1), and

f̃(m) = w1(m)
m−1∑
m2=0

w2(m2)

m2−1∑
m3=0

w3(m3) · · ·
mk−2−1∑
mk−1=0

wk−1(mk−1)

mk−1−1∑
mk=0

f(mk).


(2.9)

Theorem 2.4. Assume that u(m), f(m) are nonnegative functions and g(m) is a
positive function for m ∈ N0. If p1 ≥ p2 ≥ 0, p1 ̸= 0 and for some nonnegative
constant u0,

up1(m) ≤ u0 +
m−1∑
m1=0

m1−1∑
m2=0

m2−1∑
m3=0

· · ·
mk−2−1∑
mk−1=0

1

g(mk−1)

mk−1−1∑
mk=0

f(mk)u
p2(mk), m ∈ N0,

(2.10)

then

u(m) ≤

{
u0

m−1∏
n=0

(1 + λ1ϕ(n)) + λ2

m−1∑
n=0

λn1S2,n+1

} 1
p1

, (2.11)

where λ1, λ2 are as defined in Theorem 2.3,

S2,1 = ϕ(0) + ϕ(1) + · · ·+ ϕ(m− 1),

S2,2 = ϕ(0)ϕ(1) + ϕ(0)ϕ(2) + · · ·+ ϕ(m− 2)ϕ(m− 1),

...

S2,m = ϕ(0)ϕ(1) . . . ϕ(m− 1), and

ϕ(m) =
m−1∑
m2=0

m2−1∑
m3=0

· · ·
mk−2−1∑
mk−1=0

1

g(mk−1)

mk−1−1∑
mk=0

f(mk).


(2.12)

Theorem 2.5. Assume that u(m), f(m) are nonnegative functions and g(m) is a
positive function defined on N0. If p1 ≥ p2 ≥ 0, p1 ̸= 0 and for some nonnegative
constant u0,
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up1(m) ≤ u0 +
m−1∑
m1=0

1

g(m1)

m1−1∑
m2=0

m2−1∑
m3=0

· · ·
mk−1−1∑
mk=0

f(mk)u
p2(mk), m ∈ N0, (2.13)

then

u(m) ≤

{
u0

m−1∏
n=0

(1 + λ1ψ(n)) + λ2

m−1∑
n=0

λn1S3,n+1

} 1
p1

, (2.14)

where λ1, λ2 are as defined in Theorem 2.3,

S3,1 = ψ(0) + ψ(1) + · · ·+ ψ(m− 1),

S3,2 = ψ(0)ψ(1) + ψ(0)ψ(2) + · · ·+ ψ(m− 2)ψ(m− 1),

...

S3,m = ψ(0)ψ(1) . . . ψ(m− 1), and

ψ(m) =
1

g(m)

m−1∑
m2=0

m2−1∑
m3=0

· · ·
mk−2−1∑
mk−1=0

mk−1−1∑
mk=0

f(mk).


(2.15)

Theorem 2.6. Assume that u(m), f(m) are nonnegative functions and g(m) is a
positive function defined on N0. If p1 ≥ p2 ≥ 0, p1 ̸= 0 and for some nonnegative
constant u0,

up1(m) ≤ u0 +
m−1∑
m1=0

m1−1∑
m2=0

m2−1∑
m3=0

· · ·
mk−1−1∑
mk=0

1

g(mk)

mk−1∑
n1=0

n1−1∑
n2=0

n2−1∑
n3=0

· · ·
nk−1−1∑
nk=0

f(nk)u
p2(nk), m ∈ N0, (2.16)

then

u(m) ≤

{
u0

m−1∏
n=0

(1 + λ1χ(n)) + λ2

m−1∑
n=0

λn1S4,n+1

} 1
p1

, (2.17)
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where λ1, λ2 are as defined in Theorem 2.3,

S4,1 = χ(0) + χ(1) + · · ·+ χ(m− 1),

S4,2 = χ(0)χ(1) + χ(0)χ(2) + · · ·+ χ(m− 2)χ(m− 1),

...

S4,m = χ(0)χ(1) . . . χ(m− 1), and

χ(m) =

m1−1∑
m2=0

m2−1∑
m3=0

· · ·
mk−1−1∑
mk=0

1

g(mk)

mk−1∑
n1=0

n1−1∑
n2=0

n2−1∑
n3=0

· · ·
nk−1−1∑
nk=0

f(nk).


(2.18)

Proof. The proofs for Theorems 2.3 to 2.6 exhibit a comparable structure; so, we
shall provide the proof for Theorem 2.3 as an exemplification. Analogous proce-
dures can be employed, with suitable revisions, to establish the proofs for the other
theorems.
Let’s start with the condition in which u0 > 0 and set

z(m) = u0 +
m−1∑
m1=0

w1(m1)

m1−1∑
m2=0

w2(m2) · · ·
mk−2−1∑
mk−1=0

wk−1(mk−1)

mk−1−1∑
mk=0

f(mk)u
p2(mk).

(2.19)

It provides

z(0) = u0, (2.20)

and the inequality (2.7) implies that

up1(m) ≤ z(m). (2.21)

Further, using Zhao’s Lemma 2.2, we obtain

Lkz(m) = f(m)up2(m) ≤ f(m)z
p2
p1 (m) ≤ f(m)(λ1z(m) + λ2). (2.22)

Obviously, z(m) ≤ z(m+ 1) and hence, we get

∆

(
Lk−1z(m)

λ1z(m) + λ2

)
=

Lk−1z(m+ 1)

λ1z(m+ 1) + λ2
− Lk−1z(m)

λ1z(m) + λ2

≤ Lk−1z(m+ 1)

λ1z(m) + λ2
− Lk−1z(m)

λ1z(m) + λ2

=
∆Lk−1z(m)

λ1z(m) + λ2

=
Lkz(m)

λ1z(m) + λ2
≤ f(m). (2.23)
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Now, substituting m = mk and summing both sides of inequality (2.23) over mk

from 0 to m− 1 leads to

Lk−1z(m)

λ1z(m) + λ2
≤

m−1∑
mk=0

f(mk). (2.24)

Further,

∆

(
Lk−2z(m)

λ1z(m) + λ2

)
≤ ∆Lk−2z(m)

λ1z(m) + λ2
=
wk−1(m)Lk−1z(m)

λ1z(m) + λ2
≤ wk−1(m)

m−1∑
mk=0

f(mk).

(2.25)

At this time, put m = mk−1 in the inequality (2.25) and sum it over mk−1 from 0
to m− 1 to get

Lk−2z(m)

λ1z(m) + λ2
≤

m−1∑
mk−1=0

wk−1(mk−1)

mk−1−1∑
mk=0

f(mk). (2.26)

Proceeding further in the same fashion, we obtain

∆z(m)

λ1z(m) + λ2
≤ w1(m)

m−1∑
m2=0

w2(m2)

λ2−1∑
m3=0

w3(m3) · · ·
mk−2−1∑
mk−1=0

wk−1(mk−1)

mk−1−1∑
mk=0

f(mk).

(2.27)

It provide us the estimate

z(m+ 1) ≤

{
w1(m)

m−1∑
m2=0

w2(m2)

λ2−1∑
m3=0

w3(m3)
∑̇mk−2−1

mk−1=0
wk−1(mk−1)

mk−1−1∑
mk=0

f(mk)

}
× (λ1z(m) + λ2) + z(m)

=
(
λ1f̃(m) + 1

)
z(m) + λ2f̃(m), (2.28)

where f̃(m) is as stated in (2.9). Thus, using Lemma 2.1, we achieve the bound
on z(m) as

z(m) ≤ z(0)
m−1∏
n=0

(1 + λ1f̃(n)) + λ2

m−1∑
n=0

λn1S1,n+1, (2.29)
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where S1,1, S1,2, . . . , S1,m are elementary symmetric functions as defined in (2.9).
Finally, the combined use of (2.21) and (2.29) provides the desired explicit bound
on u(m) as

u(m) ≤

{
u0

m−1∏
n=0

(1 + λ1f̃(n)) + λ2

m−1∑
n=0

λn1S1,n+1

} 1
p1

.

This concludes the proof of our inequality.

Remark 2.2. In the next remarks, we present many observations that underscore
the importance of our findings in relation to the existing literature.

(i) Pachpatte’s inequality ([17], p. 46, Theorem 1.6.1(a1)) becomes a particular
case of Theorem 2.3 for p1 = p2 = 1.

(ii) The inequality presented in Theorem 2.4 extends the Pachpatte’s inequality
stated in ([17], p. 46, Theorem 1.6.1(a2)) to more general nonlinear case.
Moreover, considering p1 = p2 = 1, one can conveniently achieve this noted
Pachpatte’s inequality.

(iii) If one assumes p1 = 1 = p2, then the inequality in Theorem 2.5 turns into
a more general nonlinear extension of Pachpatte’s inequality ([17], p. 47,
Theorem 1.6.1(a3)).

(iv) The inequality in Theorem 2.6 becomes a more general nonlinear extension
of Pachpatte’s inequality ([17], p. 47, Theorem 1.6.1(a4)) if p1 = p2 = 1 is
assumed.

Theorem 2.7. Assume that u(m), f1(m), f2(m), . . . , ft(m) are non-negative func-
tions and w1(m), w2(m),. . . , wt(m) are positive functions on N0. If p1 ≥ p2 ≥
0, p1 ̸= 0 and for some u0 ≥ 0,

up1(m) ≤ u0 +
t∑

k=1

(
m−1∑
m1=0

w1(m1)

m1−1∑
m2=0

w2(m2) · · ·
mk−2−1∑
mk−1=0

wk−1(mk−1)

mk−1−1∑
mk=0

wk(mk)fk(mk)u
p2(mk)

)
, with m0 = m, m ∈ N0, (2.30)

then

u(m) ≤

{
u0

m−1∏
m1=0

(1 + λ1F (m1)) +
m−1∑
m1=0

λ2F (m1)
m−1∏

n=m1+1

(1 + λ1F (n))

} 1
p1

,
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where λ1, λ2 are as mentioned in Theorem 2.3 and

F (m) = w1(m)f1(m) + w1(m)

×
t∑

k=2

(
m−1∑
m2=0

w2(m2) · · ·
mk−2−1∑
mk−1=0

wk−1(mk−1)

mk−1−1∑
mk=0

wk(mk)fk(mk)

)
.

Proof. Let us begin with u0 > 0, and let z(m) denote right hand side of (2.30).
Then, we observe that

∆z(m)

w1(m)
− f1(m)up2(m) =

t∑
k=2

(
m1−1∑
m2=0

w2(m2) · · ·
mk−1−1∑
mk=0

wk(mk)fk(mk)u
p2(mk)

)
. (2.31)

Set

z1(m) =

t∑
k=2

(
m1−1∑
m2=0

w2(m2) · · ·
mk−2−1∑
mk−1=0

wk−1(mk−1)

mk−1−1∑
mk=0

wk(mk)fk(mk)u
p2(mk)

)
.

(2.32)

On the previous lines, we find that

∆z1(m)

w2(m)
− f2(m)up2(m) =

t∑
k=3

(
m2−1∑
m3=0

w3(m3) · · ·
mk−1−1∑
mk=0

wk(mk)fk(mk)u
p2(mk)

)
.

(2.33)

Consider

z2(m) =
t∑

k=3

(
m2−1∑
m3=0

w3(m3) · · ·
mk−2−1∑
mk−1=0

wk−1(mk−1)

mk−1−1∑
mk=0

wk(mk)fk(mk)u
p2(mk)

)
.

(2.34)

Proceeding similarly, we obtain

∆zt−2(m)

wt−1(m)
− ft−1(m)up2(m) =

m−1∑
mt=0

wt(mt)ft(mt)u
p2(mt) = zt−1(m). (2.35)

Thus, finally making use of up1(m) ≤ z(m), we achieve the estimate

∆zt−1(m) = wt(m)ft(m)up2(m) ≤ wt(m)ft(m)z
p2
p1 (m) ≤ wt(m)ft(m)

(
λ1z(m) + λ2

)
.

(2.36)
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If g(m) ≥ 0 with g(0) = 0 for m ∈ N0, then by applying the summation by parts
formula, we have

m−1∑
n=0

∆g(n)

λ1z(n) + λ2
=

g(m)

λ1z(m) + λ2
+

m−1∑
n=0

λ1∆z(n)

(λ1z(n) + λ2)(λ1z(n+ 1) + λ2)
≥ g(m)

λ1z(m) + λ2
.

(2.37)

Using (2.36) and (2.37), we get

zt−1(m)

λ1z(m) + λ2
≤

m−1∑
mt=0

∆zt−1(mt)

λ1z(mt) + λ2
≤

m−1∑
mt=0

wt(mt)ft(mt). (2.38)

Further, using (2.35)-(2.38), we obtain

zt−2(m)

λ1z(m) + λ2
≤

m−1∑
mt−1=0

wt−1(mt−1)ft−1(mt−1) +

m−1∑
mt−1=0

wt−1(mt−1)

mt−1−1∑
mt=0

wt(mt)ft(mt).

(2.39)

Proceeding similarly, we get

z1(m)

λ1z(m) + λ2
≤

t∑
k=2

(
m−1∑
m2=0

w2(m2) · · ·
mk−2−1∑
mk−1=0

wk−1(mk−1)

mk−1−1∑
mk=0

wk(mk)fk(mk)

)
.

(2.40)

Thus

∆z(m)

λ1z(m) + λ2
≤ w1(m)f1(m) + w1(m)×

t∑
k=2

(
m−1∑
m2=0

w2(m2) · · ·
mk−1−1∑
mk=0

wk(mk)fk(mk)

)
.

(2.41)

If we let

F (m) = w1(m)f1(m) + w1(m)×
t∑

k=2

(
m−1∑
m2=0

w2(m2) · · ·
mk−2−1∑
mk−1=0

wk−1(mk−1)

mk−1−1∑
mk=0

wk(mk)fk(mk)

)
,

then (2.41) gives

∆z(m) ≤ λ1F (m)z(m) + λ2F (m). (2.42)
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Now, applying Pachpatte’s inequality to (2.42) yields the bound as

z(m) ≤ z(0)
m−1∏
m1=0

(1 + λ1F (m1)) +
m−1∑
m1=0

λ2F (m1)
m−1∏

n=m1+1

(1 + λ1F (n)).

Utilizing this bound in up1(m) ≤ z(m) gives us the desired result.

Remark 2.3. If p1 = 1 = p2 is taken into account, the previously described
inequality turns into a more extensive nonlinear extension of Pachpatte’s inequality
([17], p. 51).

3. Applications

Example 3.1. In this application, we will investigate the relevance of Theorem
2.3 to determine the boundedness, uniqueness, and continuous dependence of the
solutions on the initial data to difference equations of the form

Lku
p1(m) = h(m,u(m)), p1 ≥ 1, with up1(0) = u0 and Lt−1u

p1(0) = 0, for 2 ≤ t ≤ k.
(3.1)

Boundedness of u(m): Assume that h(m,u(m)) in equation (3.1) satisfies

|h(m,u(m))| ≤ f(m)|u(m)|, (3.2)

where f(m) is real valued with f(m) ≥ 0,m ∈ N0. Then each solution u(m) of
(3.1) is bounded with the explicit bound as

|u(m)| ≤

{
|u0|

m−1∏
m1=0

(
1 +

1

p1
c

1−p1
p1

[
w1(m1)

m1−1∑
m2=0

w2(m2)

m2−1∑
m3=0

w3(m3) . . .

mk−2−1∑
mk−1=0

wk−1(mk−1)

mk−1−1∑
mk=0

f(mk)

])
+
p1 − 1

p1
c

1
p1

m−1∑
m1=0

(
1

p1
c

1−p1
p1

)m1

S1,m1+1

} 1
p1

,

(3.3)

where S1,i, 1 ≤ i ≤ m are as described in (2.9).
Proof. It is simple to figure out that u(m) satisfies a sum-difference equation,

up1(m) = u0 +
m−1∑
m1=0

w1(m1)

m1−1∑
m2=0

w2(m2) · · ·
mk−2−1∑
mk−1=0

wk−1(mk−1)

mk−1−1∑
mk=0

h(mk, u(mk)),

(3.4)
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provided that u(m) is a solution of (3.1). Using (3.2) in (3.4), we see that

|up1(m)| ≤ |u0|+
m−1∑
m1=0

w1(m1)

m1−1∑
m2=0

w2(m2) · · ·
mk−2−1∑
mk−1=0

wk−1(mk−1)

mk−1−1∑
mk=0

f(m)|u(m)|.

(3.5)

Then, using Theorem 2.3, we get

|u(m)| ≤

{
|u0|

m−1∏
m1=0

(
1 +

1

p1
c

1−p1
p1

[
w1(m1)

m1−1∑
m2=0

w2(m2)

m2−1∑
m3=0

w3(m3) . . .

mk−2−1∑
mk−1=0

wk−1(mk−1)

mk−1−1∑
mk=0

f(mk)

])
+
p1 − 1

p1
c

1
p1

m−1∑
m1=0

(
1

p1
c

1−p1
p1

)m1

S1,m1+1

} 1
p1

.

Uniqueness of u(m) : If h(m,u(m)) in equation (3.1) satisfies

|h(m,u1(m))− h(m,u2(m))| ≤ f(m)|up1(m)− up2(m)|, (3.6)

then the difference equation (3.1) has at most a single solution.
Proof. If u1(m), u2(m) are two solutions of (3.1), using (3.4) and (3.6), we find
that

|up1(m)− up2(m)| ≤
m−1∑
m1=0

w1(m1)

m1−1∑
m2=0

w2(m2) · · ·
mk−1−1∑
mk=0

f(m)|up1(m)− up2(m)|.

(3.7)

Further, on applying Theorem 2.3 with u(m) = |up11 (m) − up12 (m)|, u0 = 0, and
p1 = 1 = p2 to (3.7), we obtain u(m) ≤ 0. Thus, consequently, u(m) = 0, which
gives us that u1(m) = u2(m).
Continuous dependency of solution on equation and its initial conditions:
Consider the another difference equation of the class (3.1) as

Lkũ
p1(m) = h̃(m, ũ(m)), p1 ≥ 1, (3.8)

with ũp1(0) = ũ0 and Lt−1ũ
p1(0) = 0, for 2 ≤ t ≤ k. If for small ϵ > 0,

|u0 − ũ0| ≤ ϵ (3.9)
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and

P (m) =
m−1∑
m1=0

w1(m1)

m1−1∑
m2=0

w2(m2) · · ·
mk−1−1∑
mk=0

f(mk)|h(mk, ũ(mk))− h̃(mk, ũ(mk))| ≤ ϵ,

(3.10)

then solution of (3.1) possesses continuous dependency on h and its initial condi-
tions.
Proof. It is clear that equivalent difference equation of (3.8) is

ũp1(m) = ũ0 +

m−1∑
m1=0

w1(m1)

m1−1∑
m2=0

w2(m2) · · ·
mk−2−1∑
mk−1=0

wk−1(mk−1)

mk−1−1∑
mk=0

f(mk)ũ(mk), m ∈ N0.

(3.11)

For simplicity, let us rewrite right hand sides of equations (3.4) and (3.11) as
u0 + A(m, k, h(mk, u(mk))) and ũ0 + A(m, k, h̃(mk, ũ(mk))), respectively. Then
(3.4), (3.6), (3.9), (3.10), and (3.11) altogether gives us that

|up1(m)− ũp1(m)| ≤ |u0 − ũ0|+ A(m, k, |h(mk, u(mk))− h̃(mk, ũ(mk))|)
≤ |u0 − ũ0|+ A(m, k, |h(mk, u(mk))− h(mk, ũ(mk))

+ h(mk, ũ(mk))− h̃(mk, ũ(mk))|)
≤ |u0 − ũ0|+ A(m, k, |h(mk, u(mk))− h(mk, ũ(mk))|) + P (m)

≤ 2ϵ+ A(m, k, |up1(mk)− ũp1(mk)|). (3.12)

Now, Theorem 2.3 with u(m) = |up1(m) − ũp1(m)| applied to this inequality pro-
duces

|up1(m)− ũp1(m)| ≤

{
2ϵ

m−1∏
m1=0

(
1 +

1

p1
c
1−p1
p1

[
w1(m1)

m1−1∑
m2=0

w2(m2) · · ·
mk−1−1∑
mk=0

f(mk)

])

+
p1 − 1

p1
c

1
p1

m−1∑
m1=0

(
1

p1
c
1−p1
p1

)m1

S1,m1+1

} 1
p1

. (3.13)

Further, if each of w1(m), w2(m), . . . , wk(m) are bounded on the subset Ñ0 of N0,
then

m−1∏
m1=0

(
1 +

1

p1
c

1−p1
p1

[
w1(m1)

m1−1∑
m2=0

w2(m2) · · ·
mk−1−1∑
mk=0

f(mk)

])

+
p1 − 1

p1
c

1
p1

m−1∑
m1=0

(
1

p1
c

1−p1
p1

)m1

S1,m1+1 ≤M. (3.14)
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On combining (3.14) with (3.13), we find that

u(m) = |up1(m)− ũp1(m)| ≤ (2ϵM)
1
p1 .

This indicates the dependence of the solution of (3.1) on ϵ,M, and subsequently
on the function f and the initial conditions.

We further offer an example to demonstrate the significance of Theorem 2.7 in
determining an explicit bound on its solution.

Example 3.2. Consider

u2(m) =1 +mu2(m) +
m−1∑
m1=0

(
2m1

5m1 + 1
u2(m1)

)
+

(
m−1∑
m1=0

(
1

5m1 + 1

)
m1−1∑
m2=0

(
2

1 +m2

)m2−1∑
m3=0

5(m3 + 1)u2(m3)

)
, (3.15)

where m ∈ N0. Let u0 = 1, f1(m) = 5m + 1, f2(m) = 1 + m = f3(m), w1(m) =
5m− 1

25m2 − 1
, w2(m) =

2

1 +m
,w3(m) = 5. For p1 = 2 = p2, an application of Theorem

2.7 gives that

u(m) ≤

{
m−1∏
m1=0

(1 + F (m1))

} 1
2

, as λ1 = 1, λ2 = 0, where (3.16)

F (m) = w1(m)f1(m) + w1(m)

×

(
m−1∑
m2=0

w2(m2)f2(m2) +

m1−1∑
m2=0

w2(m2)

m2−1∑
m3=0

w3(m3)f3(m3)

)
.

Upon computation, using Mathematica, we find that F (m) =
5m2 + 9m+ 2

10m+ 2
. Thus,

using the value of F (m) in (3.16), we conclude that

u(m) ≤

{
m−1∏
m1=0

(
1 +

5m2
1 + 9m1 + 2

10m1 + 2

)} 1
2

=

{
22−mΓ

(
6
5

)
Γ
(
m−

√
281
10

+ 19
10

)
Γ
(
m+

√
281
10

+ 19
10

)
Γ
(

1
10

(
29−

√
281
))

Γ
(

1
10

(√
281 + 29

))
Γ
(
m+ 1

5

)} 1
2

.

This provides the bound on the solution u(m) of (3.15) for each m ∈ N0.



Inequalities for Higher Order Iterated Difference Equations ... 119

4. Conclusion

This article presents new algebraic discrete inequalities for higher-order finite
difference equations with iterated sums using a symmetric function technique.
These findings can be used to estimate bounds on the solutions of more broad
families of nonlinear finite difference equations with iterated sums, for instances
in which the previous results are not directly applicable. A theoretical example of
such a difference equation is presented to describe the need to use the symmetric
function approach to find its solution and investigate its boundedness, uniqueness,
and continuous dependency on initial data. Furthermore, a numerical example is
provided to demonstrate the relevance of our results in execution. In the numerical
example, the computing program Mathematica is used to determine the explicit
bounds of an unknown function. However, for analyzing general classes of differ-
ence equations, these results can be further extended to solve and analyze a wider
class of higher-order difference equations.
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